Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Flouroanilino)tropone

Gideon Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: geds12@yahoo.com

Received 12 October 2007; accepted 13 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.083; data-to-parameter ratio = 14.2.

The title compound, $C_{13}H_{10}FNO$, which was synthesized from the reaction of tosyloxytropone and 4-fluoroaniline, has two independent molecules of similar bond dimensions in the asymmetric unit. Adjacent molecules are linked by hydrogen bonds and $C-H\cdots$ F interactions.

Related literature

For general background, see: Hicks & Brookhart (2001); Kubo *et al.* (2005, 2006); Polonsky *et al.* (1981); Roesky & Burgstein (1999); Yamamoto *et al.* (2001). For related diketonato complexes, see: Janse van Rensburg & Roodt (2006); Janse van Rensburg *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{10}\text{FNO} \\ M_r = 215.22 \\ \text{Monoclinic, } P2_1/n \\ a = 9.9075 \ (3) \ \text{\AA} \\ b = 17.5746 \ (5) \ \text{\AA} \\ c = 12.2212 \ (4) \ \text{\AA} \\ \beta = 96.714 \ (1)^\circ \end{array}$

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{min} = 0.982, T_{max} = 0.983$ 0.19 × 0.18 × 0.18 mm

 $V = 2113.37 (11) \text{ Å}^3$

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 100 (2) K

Z = 8

37801 measured reflections 4116 independent reflections 3581 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.083$ S = 1.054116 reflections 289 parameters H-atom parameters constrained $\Delta\rho_{max}=0.20$ e Å⁻³ $\Delta\rho_{min}=-0.20$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

		/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N12-H12\cdots O31^{i}$	0.88	2.07	2.8891 (13)	154
$N32-H32\cdots O11^{i}$	0.88	2.13	2.9524 (12)	155
C45-H45F24	0.95	2.72	3.6058 (15)	156
$C23\!-\!H23\!\cdots\!F44^{ii}$	0.95	2.57	3.4538 (16)	155

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *SHELXL97*.

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant number GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2336).

References

- Brandenburg, K. & Putz, H. (2006). DIAMOND. Release 3.0e. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.
- Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hicks, F. A. & Brookhart, M. (2001). Organometallics, 20, 3217-3219.
- Janse van Rensburg, J. M. & Roodt, A. (2006). Acta Cryst. E62, m2981–m2983. Janse van Rensburg, J. M., Roodt, A. & Muller, A. (2006). Acta Cryst. E62, m1040–m1042
- Kubo, K., Matsumoto, T., Hashimoto, M. & Mori, A. (2006). Acta Cryst. E62, 03584–03586.
- Kubo, K., Matsumoto, T., Katahira, K. & Mori, A. (2005). Acta Cryst. E61, 02750–02752.
- Polonsky, J., Varenne, J., Prange, T., Pascard, C., Jacquemin, H. & Fournet, A. (1981). Chem. Commun. pp. 731–732.
- Roesky, P. W. & Burgstein, M. R. (1999). Inorg. Chem. 38, 5629-5632.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yamamoto, E., Kubo, K., Kato, N. & Mori, A. (2001). Acta Cryst. E57, 0279– 0281.

Acta Cryst. (2007). E63, o4353 [doi:10.1107/S1600536807050271]

2-(4-Flouroanilino)tropone

G. Steyl

Comment

In the current paper the title compound, (I), is presented as an example of a product formed during the exchange reaction of tosyloxytropone and the corresponding 4-flouroaniline. The compound is the first of a series of halogenated derivatives of tropolone type molecules, see Fig. 1. Two closely related derivatives of *N*-alkyl (Roesky & Burgstein, 1999) and *N*-aryl (Hicks & Brookhart, 2001) have been reported. The addition of a halogen moiety to the compound can drastically affect the packing of the molecule in the solid state.

Two independent molecules are present in the asymmetric unit, with the only observable difference being the rotation of the phenyl moiety compared to the tropone molecule. This is clearly illustrated by the torsional twist of the C—N—C—C (see Table 1) and the interplanar dihedral angle formed by the phenyl and seven membered tropone ring systems of 46.04 (3) and 41.45 (4) $^{\circ}$, respectively.

Weak intra- and intermolecular interactions is observed in the solid state, see Table 2. The weak intermolecular hydrogen bonds form dimeric systems in the solid state consisting of the two independent units. The flouro moieties do have a significant effect on the packing of the molecule in the solid state, with C—F…H interactions being observed.

Experimental

The title compound was obtained during the coupling tosyloxytropone and 4-flouroaniline in a 1:1 ration in toluene. On evaporation of the solvent; crystals suitable for X-Ray crystallography was obtained.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C \text{ aromatic})$.

Figures

Fig. 1. : Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability).

2-(4-Flouroanilino)tropone

Crystal data
C ₁₃ H ₁₀ FNO
$M_r = 215.22$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 9.9075 (3) Å

 $F_{000} = 896$ $D_x = 1.353 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9979 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 (2) KCuboid, yellow $0.19 \times 0.18 \times 0.18 \text{ mm}$

Data collection

Z = 8

b = 17.5746 (5) Å

c = 12.2212 (4) Å

 $\beta = 96.7140 \ (10)^{\circ}$

 $V = 2113.37 (11) \text{ Å}^3$

Bruker SMART 1K CCD area-detector diffractometer	4116 independent reflections
Radiation source: fine-focus sealed tube	3581 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
Detector resolution: 512 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.0^{\circ}$
ϕ and ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$k = -20 \rightarrow 21$
$T_{\min} = 0.982, \ T_{\max} = 0.983$	$l = -14 \rightarrow 14$
37801 measured reflections	

Refinement

Refinement on F^2	S
Least-squares matrix: full	F s
$R[F^2 > 2\sigma(F^2)] = 0.032$	ł
$wR(F^2) = 0.083$	v
<i>S</i> = 1.05	(
4116 reflections	Z
289 parameters	Z
Primary atom site location: structure-invariant direct methods	E

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 0.8256P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.20$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F24	0.33924 (10)	0.60818 (5)	0.00722 (6)	0.0470 (2)
F44	0.09980 (9)	0.38655 (5)	-0.11523 (7)	0.0468 (2)
O31	0.32909 (8)	0.31212 (5)	0.52144 (7)	0.0265 (2)
011	0.50514 (8)	0.63320 (5)	0.65968 (7)	0.0294 (2)
N32	0.20137 (9)	0.33470 (6)	0.33231 (8)	0.0213 (2)
H32	0.2874	0.3423	0.3569	0.018*
N12	0.42537 (10)	0.59783 (6)	0.46111 (8)	0.0221 (2)
H12	0.5013	0.6202	0.4887	0.019*
C21	0.39972 (12)	0.59728 (6)	0.34498 (10)	0.0210 (2)
C46	0.23044 (12)	0.40892 (7)	0.17152 (10)	0.0256 (3)
H46	0.2902	0.4412	0.2168	0.031*
C41	0.16614 (11)	0.34861 (7)	0.21878 (10)	0.0208 (2)
C26	0.50927 (12)	0.59112 (7)	0.28413 (10)	0.0240 (3)
H26	0.5982	0.5839	0.3210	0.029*
C42	0.07791 (11)	0.30169 (7)	0.15148 (10)	0.0225 (3)
H42	0.0340	0.2604	0.1830	0.027*
C11	0.39801 (11)	0.59507 (7)	0.64867 (10)	0.0214 (2)
C22	0.26927 (12)	0.60873 (7)	0.29035 (10)	0.0250 (3)
H22	0.1941	0.6137	0.3315	0.030*
C15	0.13306 (12)	0.49457 (7)	0.67800 (10)	0.0260 (3)
H15	0.0593	0.4683	0.7039	0.031*
C13	0.24472 (12)	0.51698 (7)	0.50645 (10)	0.0218 (2)
H13	0.2353	0.5017	0.4314	0.026*
C31	0.20423 (12)	0.29945 (6)	0.51716 (10)	0.0222 (3)
C32	0.12203 (11)	0.31135 (6)	0.40904 (10)	0.0207 (2)
C44	0.12025 (13)	0.37460 (8)	-0.00410 (11)	0.0307 (3)
C14	0.15145 (12)	0.48383 (7)	0.56961 (10)	0.0236 (3)
H14	0.0912	0.4482	0.5313	0.028*
C16	0.21218 (12)	0.54045 (7)	0.75443 (10)	0.0252 (3)
H16	0.1821	0.5431	0.8254	0.030*
C17	0.32642 (12)	0.58199 (7)	0.74198 (10)	0.0237 (3)
H17	0.3652	0.6067	0.8074	0.028*
C25	0.48976 (14)	0.59541 (7)	0.17019 (11)	0.0296 (3)

0.5643	0.5913	0.1282	0.035*
0.34890 (11)	0.56856 (6)	0.53560 (9)	0.0200 (2)
0.24943 (14)	0.61280 (7)	0.17668 (11)	0.0301 (3)
0.1610	0.6204	0.1390	0.036*
-0.11526 (12)	0.27952 (7)	0.45227 (11)	0.0290 (3)
-0.2057	0.2774	0.4166	0.035*
0.14884 (13)	0.27657 (7)	0.61475 (11)	0.0292 (3)
0.2136	0.2740	0.6784	0.035*
0.05403 (12)	0.31496 (7)	0.03915 (10)	0.0272 (3)
-0.0066	0.2836	-0.0069	0.033*
0.35972 (15)	0.60573 (7)	0.11933 (10)	0.0310 (3)
0.20782 (13)	0.42200 (7)	0.05935 (11)	0.0309 (3)
0.2518	0.4628	0.0268	0.037*
-0.10052 (13)	0.25745 (7)	0.56042 (12)	0.0320 (3)
-0.1802	0.2401	0.5890	0.038*
-0.01810 (12)	0.30469 (7)	0.38593 (11)	0.0242 (3)
-0.0538	0.3196	0.3136	0.029*
0.01932 (14)	0.25768 (7)	0.63340 (12)	0.0327 (3)
0.0094	0.2425	0.7066	0.039*
	0.5643 0.34890 (11) 0.24943 (14) 0.1610 -0.11526 (12) -0.2057 0.14884 (13) 0.2136 0.05403 (12) -0.0066 0.35972 (15) 0.20782 (13) 0.2518 -0.10052 (13) -0.1802 -0.01810 (12) -0.0538 0.01932 (14) 0.0094	0.5643 0.5913 $0.34890 (11)$ $0.56856 (6)$ $0.24943 (14)$ $0.61280 (7)$ 0.1610 0.6204 $-0.11526 (12)$ $0.27952 (7)$ -0.2057 0.2774 $0.14884 (13)$ $0.27657 (7)$ 0.2136 0.2740 $0.05403 (12)$ $0.31496 (7)$ -0.0066 0.2836 $0.35972 (15)$ $0.60573 (7)$ $0.20782 (13)$ $0.42200 (7)$ 0.2518 0.4628 $-0.10052 (13)$ $0.25745 (7)$ -0.1802 0.2401 $-0.01810 (12)$ $0.30469 (7)$ -0.0538 0.3196 $0.01932 (14)$ $0.25768 (7)$ 0.0094 0.2425	0.5643 0.5913 0.1282 $0.34890(11)$ $0.56856(6)$ $0.53560(9)$ $0.24943(14)$ $0.61280(7)$ $0.17668(11)$ 0.1610 0.6204 0.1390 $-0.11526(12)$ $0.27952(7)$ $0.45227(11)$ -0.2057 0.2774 0.4166 $0.14884(13)$ $0.27657(7)$ $0.61475(11)$ 0.2136 0.2740 0.6784 $0.05403(12)$ $0.31496(7)$ $0.03915(10)$ -0.0066 0.2836 -0.0069 $0.35972(15)$ $0.60573(7)$ $0.11933(10)$ $0.20782(13)$ $0.42200(7)$ $0.5935(11)$ 0.2518 0.4628 0.0268 $-0.10052(13)$ $0.25745(7)$ $0.56042(12)$ -0.1802 0.2401 0.5890 $-0.01810(12)$ $0.30469(7)$ 0.3136 $0.01932(14)$ $0.25768(7)$ $0.63340(12)$ 0.0094 0.2425 0.7066

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F24	0.0714 (6)	0.0513 (5)	0.0165 (4)	-0.0117 (5)	-0.0026 (4)	0.0076 (3)
F44	0.0561 (5)	0.0553 (6)	0.0255 (5)	-0.0206 (4)	-0.0100 (4)	0.0137 (4)
O31	0.0221 (4)	0.0298 (5)	0.0274 (5)	-0.0002 (3)	0.0023 (3)	0.0019 (4)
O11	0.0238 (4)	0.0413 (5)	0.0232 (5)	-0.0093 (4)	0.0032 (3)	-0.0070 (4)
N32	0.0170 (5)	0.0237 (5)	0.0233 (5)	-0.0024 (4)	0.0026 (4)	0.0001 (4)
N12	0.0195 (5)	0.0287 (5)	0.0178 (5)	-0.0012 (4)	0.0005 (4)	-0.0028 (4)
C21	0.0264 (6)	0.0172 (6)	0.0188 (6)	0.0018 (4)	0.0007 (5)	-0.0002 (4)
C46	0.0262 (6)	0.0231 (6)	0.0271 (7)	-0.0047 (5)	0.0015 (5)	-0.0001 (5)
C41	0.0181 (5)	0.0209 (6)	0.0237 (6)	0.0023 (4)	0.0029 (4)	0.0011 (5)
C26	0.0278 (6)	0.0216 (6)	0.0226 (7)	0.0030 (5)	0.0031 (5)	0.0010 (5)
C42	0.0180 (5)	0.0213 (6)	0.0282 (7)	-0.0003 (4)	0.0035 (5)	0.0019 (5)
C11	0.0203 (6)	0.0225 (6)	0.0208 (6)	0.0016 (5)	0.0004 (4)	-0.0020 (4)
C22	0.0263 (6)	0.0223 (6)	0.0257 (7)	0.0025 (5)	0.0000 (5)	-0.0002 (5)
C15	0.0222 (6)	0.0253 (6)	0.0302 (7)	-0.0018 (5)	0.0019 (5)	0.0057 (5)
C13	0.0234 (6)	0.0211 (6)	0.0199 (6)	0.0037 (5)	-0.0021 (5)	-0.0018 (4)
C31	0.0241 (6)	0.0161 (6)	0.0271 (7)	0.0030 (4)	0.0059 (5)	0.0002 (4)
C32	0.0225 (6)	0.0146 (5)	0.0261 (6)	0.0016 (4)	0.0072 (5)	-0.0004 (4)
C44	0.0330 (7)	0.0353 (7)	0.0218 (7)	-0.0042 (6)	-0.0044 (5)	0.0080 (5)
C14	0.0209 (6)	0.0186 (6)	0.0297 (7)	0.0015 (4)	-0.0044 (5)	0.0012 (5)
C16	0.0268 (6)	0.0272 (6)	0.0220 (6)	0.0012 (5)	0.0050 (5)	0.0031 (5)
C17	0.0266 (6)	0.0252 (6)	0.0190 (6)	0.0000 (5)	0.0016 (5)	-0.0018 (5)
C25	0.0411 (7)	0.0261 (7)	0.0230 (7)	-0.0010 (5)	0.0101 (5)	0.0006 (5)
C12	0.0192 (5)	0.0209 (6)	0.0196 (6)	0.0056 (4)	0.0010 (4)	-0.0002 (4)
C23	0.0354 (7)	0.0254 (6)	0.0265 (7)	-0.0003 (5)	-0.0087 (5)	0.0042 (5)
C34	0.0216 (6)	0.0251 (6)	0.0419 (8)	0.0019 (5)	0.0107 (5)	-0.0026 (5)

C37	0.0326 (7)	0.0276 (7)	0.0280(7)	0.0057 (5)	0.0068 (5)	0.0067 (5)
C43	0.0230 (6)	0.0290 (6)	0.0281 (7)	-0.0041 (5)	-0.0034(5)	0.0009 (5)
C24	0.0512 (8)	0.0248 (6)	0.0157 (6)	-0.0043 (6)	-0.0019 (6)	0.0036 (5)
C45	0.0343 (7)	0.0271 (7)	0.0306 (7)	-0.0078 (5)	0.0007 (5)	0.0078 (5)
C35	0.0285 (6)	0.0276 (7)	0.0435 (8)	0.0010 (5)	0.0190 (6)	0.0026 (6)
C33	0.0222 (6)	0.0217 (6)	0.0293 (7)	0.0031 (5)	0.0059 (5)	-0.0002(5)
C36	0.0398 (7)	0.0273 (7)	0.0343 (8)	0.0060 (6)	0.0179 (6)	0.0081 (5)
Geometric param	neters (Å, °)					
F24—C24		1.3621 (15)	C13—	-C12	1.	3886 (16)
F44—C44		1.3658 (15)	C13—	-C14	1.	3985 (17)
011—C11		1.2491 (14)	C13—	-H13	0.	9500
N12—C12		1.3522 (15)	C31—	-C37	1.	4277 (17)
N12—C21		1.4124 (15)	C31—	-C32	1.	4837 (17)
O31—C31		1.2520 (14)	C32—	-C33	1.	3890 (16)
N32—C32		1.3558 (15)	C44—	-C43	1.	3746 (18)
N32—C41		1.4118 (15)	C44—	-C45	1.	3750 (18)
N32—H32		0.8800	C14—	-H14	0.	9500
N12—H12		0.8800	C16—	-C17	1.	3702 (17)
C21—C26		1.3898 (17)	C16—	-H16	0.	9500
C21—C22		1.3982 (16)	C17—	-H17	0.	9500
C46—C45		1.3821 (18)	C25—	-C24	1.	375 (2)
C46—C41		1.3961 (16)	C25—	-H25	0.	9500
C46—H46		0.9500	C23—	-C24	1.	371 (2)
C41—C42		1.3973 (16)	C23—	-H23	0.	9500
C26—C25		1.3853 (18)	C34—	-C35	1.	3689 (19)
C26—H26		0.9500	C34—	-C33	1.	4007 (17)
C42—C43		1.3852 (18)	C34—	-H34	0.	9500
C42—H42		0.9500	C37—	-C36	1.	3701 (18)
C11—C17		1.4302 (17)	C37—	-H37	0.	9500
C11—C12		1.4853 (16)	C43—	-H43	0.	9500
C22—C23		1.3819 (18)	C45—	-H45	0.	9500
C22—H22		0.9500	C35—	-C36	1.	399 (2)
C15—C14		1.3712 (18)	C35—	-H35	0.	9500
C15—C16		1.4020 (18)	C33—	-H33	0.	9500
C15—H15		0.9500	C36—	-H36	0.	9500
C12—N12—C21		128.67 (10)	C15—	-C14—C13	13	30.31 (11)
C32—N32—C41		129.45 (10)	C15—	-C14—H14	11	14.8
C32—N32—H32		115.3	C13—	-C14—H14	11	14.8
C41—N32—H32		115.3	C17—	-C16—C15	12	29.59 (12)
C12—N12—H12		115.7	C17—	-C16—H16	11	15.2
C21—N12—H12		115.7	C15—	-C16—H16	11	15.2
C26—C21—C22		119.46 (11)	C16—	-C17—C11	13	31.85 (11)
C26—C21—N12		118.57 (10)	C16—	-C17—H17	11	14.1
C22—C21—N12		121.77 (11)	C11—	-C17—H17	11	14.1
C45—C46—C41		120.51 (11)	C24—	-C25—C26	11	18.34 (12)
C45—C46—H46		119.7	C24—	-C25—H25	12	20.8
C41—C46—H46		119.7	C26—	-C25—H25	12	20.8

C46-C41-C42	119.26 (11)	N12_C12_C13	122.26 (11)
C46-C41-N32	117.76 (10)	N12-C12-C11	11102(10)
C42-C41-N32	122 83 (10)	C_{13} C_{12} C_{11}	126 60 (11)
$C_{25} = C_{26} = C_{21}$	122.03(10) 120.51(12)	C_{24} C_{23} C_{22}	120.00(11) 118.75(12)
C25—C26—H26	119.7	C24—C23—H23	120.6
$C_{21} - C_{26} - H_{26}$	119.7	$C_{22} = C_{23} = H_{23}$	120.6
C43 - C42 - C41	120 44 (11)	C_{35} C_{34} C_{33}	130.19(12)
C43—C42—H42	119.8	C35—C34—H34	114.9
C41 - C42 - H42	119.8	C33—C34—H34	114.9
011-C11-C17	119.65 (11)	C36—C37—C31	131.77 (13)
011-C11-C12	116.76 (10)	C36—C37—H37	114.1
C17—C11—C12	123.53 (10)	С31—С37—Н37	114.1
C23—C22—C21	120.15 (12)	C44—C43—C42	118.39 (11)
C23—C22—H22	119.9	C44—C43—H43	120.8
C21—C22—H22	119.9	C42—C43—H43	120.8
C14—C15—C16	126.56 (11)	F24—C24—C23	118.52 (12)
C14—C15—H15	116.7	F24—C24—C25	118.70 (12)
C16—C15—H15	116.7	C23—C24—C25	122.78 (12)
C12—C13—C14	130.51 (11)	C44—C45—C46	118.49 (12)
C12—C13—H13	114.7	C44—C45—H45	120.8
C14—C13—H13	114.7	C46—C45—H45	120.8
O31—C31—C37	119.31 (11)	C34—C35—C36	126.98 (12)
O31—C31—C32	116.68 (10)	С34—С35—Н35	116.5
C37—C31—C32	123.99 (11)	С36—С35—Н35	116.5
N32—C32—C33	122.10 (11)	C32—C33—C34	130.33 (12)
N32—C32—C31	110.88 (10)	С32—С33—Н33	114.8
C33—C32—C31	126.92 (11)	С34—С33—Н33	114.8
F44—C44—C43	118.53 (11)	C37—C36—C35	129.50 (13)
F44—C44—C45	118.56 (11)	С37—С36—Н36	115.2
C43—C44—C45	122.90 (12)	С35—С36—Н36	115.2
C12—N12—C21—C26	-145.61 (12)	C21—N12—C12—C11	-168.38 (10)
C12—N12—C21—C22	39.51 (17)	C14—C13—C12—N12	-176.39 (11)
C45—C46—C41—C42	-0.32 (18)	C14—C13—C12—C11	7.9 (2)
C45—C46—C41—N32	175.26 (11)	O11—C11—C12—N12	-5.99 (15)
C32—N32—C41—C46	143.54 (12)	C17—C11—C12—N12	171.17 (11)
C32—N32—C41—C42	-41.05 (18)	O11-C11-C12-C13	170.11 (11)
C22—C21—C26—C25	-0.71 (18)	C17—C11—C12—C13	-12.73 (18)
N12-C21-C26-C25	-175.71 (11)	C21—C22—C23—C24	-0.27 (18)
C46—C41—C42—C43	-0.23 (17)	O31—C31—C37—C36	-178.35 (13)
N32-C41-C42-C43	-175.56 (11)	C32—C31—C37—C36	3.2 (2)
C26—C21—C22—C23	0.91 (18)	F44—C44—C43—C42	178.23 (11)
N12-C21-C22-C23	175.74 (11)	C45—C44—C43—C42	-0.7 (2)
C41—N32—C32—C33	-6.94 (18)	C41—C42—C43—C44	0.72 (18)
C41—N32—C32—C31	176.37 (10)	C22—C23—C24—F24	178.64 (11)
O31—C31—C32—N32	-0.01 (14)	C22—C23—C24—C25	-0.6 (2)
C37—C31—C32—N32	178.46 (11)	C26—C25—C24—F24	-178.45 (11)
O31—C31—C32—C33	-176.51 (11)	C26—C25—C24—C23	0.79 (19)
C37—C31—C32—C33	1.97 (19)	F44—C44—C45—C46	-178.76 (12)
C16-C15-C14-C13	-3.7 (2)	C43—C44—C45—C46	0.2 (2)

C12-C13-C14-C15	2.4 (2)	C41—C46—C45—C44	0.3 (2)
C14-C15-C16-C17	-2.9 (2)	C33—C34—C35—C36	2.6 (2)
C15-C16-C17-C11	3.2 (2)	N32—C32—C33—C34	177.67 (12)
O11—C11—C17—C16	-176.82 (13)	C31—C32—C33—C34	-6.2 (2)
C12—C11—C17—C16	6.1 (2)	C35—C34—C33—C32	3.3 (2)
C21—C26—C25—C24	-0.12 (18)	C31—C37—C36—C35	-2.1 (2)
C21—N12—C12—C13	15.32 (18)	C34—C35—C36—C37	-2.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N12—H12···O31 ⁱ	0.88	2.07	2.8891 (13)	154
N32—H32…O11 ⁱ	0.88	2.13	2.9524 (12)	155
C45—H45…F24	0.95	2.72	3.6058 (15)	156
C23—H23…F44 ⁱⁱ	0.95	2.57	3.4538 (16)	155

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

